(图源:第四范式官网)
在能力层面,它侧重于Predict the Next “X”,X代表各大行业包罗万象的逻辑和结果。在使用层面,在支持接入企业各类模态数据的基础上,先知AIOS 5提供大模型训练、精调等低门槛建模工具、科学家创新服务体系、北极星策略管理平台、大模型纳管平台、主流算力适配优化等能力,实现端到端的行业大模型的构建、部署、管理服务。在应用层面,考虑到中国的产业和场景复杂度水平极高,实际为行业大模型垂直发展提供了环境。
这其实是中国AI公司基于产业背景发展的一个极佳案例。戴文渊曾说:“我们国内有大量场景和数据优势,当我们覆盖场景足够多,把这些模型拼起来,最后你可能也实现了AGI。”相比之下,现在流行的很多行业大模型,依然还是行业大语言模型,大而不精。划分到更精准的场景后,虽然表面上看起来需要建立很多个大模型,但每个精准场景的数据量负载有限,同时有自动化技术的帮助,反而另辟蹊径实现了AGI在应用层面的发展。
如同Mike Knoop的观点,AGI之所以在狂飙突进后迅速遇到了上行阻碍,是因为我们过度依赖语言大模型,把AGI定义为能完成大多数工作的系统,但AGI实际上应该更侧重高效获取的新的能力,解决各种场景下的开放性问题。
事实上,这也许才是正确的思路。英伟达CEO黄仁勋就在美国加州理工学院第130届毕业典礼讲话中提到,随着大模型发展,计算机从指令驱动转向意图驱动,“将来的应用程序所做的和执行的都会与我们做事的方式相似,组建专家团队,使用工具、推理、计划和执行我们的任务”。这样的逻辑本身就意味着通用性。所以我们也看到,大模型正在进入物理世界,因为物理世界的决策同样有迹可循。
类似的例子,就像过去一年多时间因AI技术估值暴涨两倍多的Palantir。Palantir原本是一家To G的大数据公司,基于数据分析和建模仿真辅助决策,但生成式AI技术令其处理数据的方式发生转变,在自动化与数据决策方面进步甚多,加速了AI To B业务的开拓。第四范式,就是在每个具有确定性的场景中建立行业大模型,助力企业掌握自己的应用,做出有效的决策。
(图源:雪球)
最后,回到关于未来前景的思考上。OpenAI过于注重把通用能力做到极致,因而暂时失去了占据特定领域产品优势的机会。相比之下,那些侧重于发展更自由、更开放的模型的企业,都得到了发展机会。而在商业模式上,以订阅为主导的OpenAI会继续“出售”大模型的能力,更像是工具;而第四范式、Glean、Scale AI、Palantir等公司则是销售技术及其附加组件和服务,更像一个系统。
Scale AI上半年以138亿美元估值融资了10亿美元。成立五年的Glean在 D 轮融资中筹集了2亿美元巨款,估值已高达22亿美元,换算成人民币在160亿元左右。第四范式在港股的估值稳定在224亿港元左右,其成长性应该主要挂钩先知平台的发展和收入。今年一季度,第四范式8.28亿元的总营收中,先知平台占5亿元,比例为60.6%。随着应用场景的增加和收入的增长,它的价值也会得到释放。
最终,AI公司在通往AGI的道路上一定免不了和行业巨头对比。但只要它们能生产出越来越多的能在实际场景中为企业创造价值的产品时,市场自然会为它们赋予不一样的价值。AGI是个巨大的概念,一切探索对未来而言都是有益的。